Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe (Ed.)In the United States, regions (such as states or counties) are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can have a profound effect on who's elected, and drawing the districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect when gerrymandering is occurring, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used to do this random sampling: randomly choose two districts, consider their union, and split this union up in a new way. This approach works well in practice and has been widely used, including in litigation, but the theory behind it remains underdeveloped. For example, it's not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a planar graph G, is the space of all partitions of G into κ connected subgraphs (κ districts) connected by recombination moves? While the answer is yes when districts can be as small as one vertex, this is not realistic in real-world settings where districts must have approximately balanced populations. Here we fix district sizes to be κ1 ± 1 vertices, κ2 ± 1 vertices,… for fixed κ1, κ2,…, a more realistic setting. We prove for arbitrarily large triangular regions in the triangular lattice, when there are three simply connected districts, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples. The triangular lattice is the most natural setting in which to first consider such a question, as graphs representing states/regions are frequently triangulated. The proof uses a sweep-line argument, and there is hope it will generalize to more districts, triangulations satisfying mild additional conditions, and other redistricting Markov chains.more » « less
-
Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe (Ed.)Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms.more » « less
An official website of the United States government

Full Text Available